About 100,000 results
Open links in new tab
  1. 一文了解Transformer全貌(图解Transformer)

    Sep 26, 2025 · 网上有关Transformer原理的介绍很多,在本文中我们将尽量模型简化,让普通读者也能轻松理解。 1. Transformer整体结构 在机器翻译中,Transformer可以将一种语言翻译成另一种语言, …

  2. 如何最简单、通俗地理解Transformer? - 知乎

    Transformer最开始应用于NLP领域的机器翻译任务,但是它的通用性很好,除了NLP领域的其他任务,经过变体,还可以用于视觉领域,如ViT(Vision Transformer)。 这些特点让Transformer自2017 …

  3. 如何从浅入深理解 Transformer? - 知乎

    Transformer升级之路:1、Sinusoidal位置编码追根溯源 Transformer升级之路:2、博采众长的旋转式位置编码 猛猿:Transformer学习笔记一:Positional Encoding(位置编码) 解密旋转位置编码 解密 …

  4. Transformer 和 cnn 是两条差异巨大的路径吗? - 知乎

    Transformer 和 CNN,真的是两条差异巨大的路径吗? 两者设计逻辑不一样,但目标一致——让机器看懂东西 CNN 是图像领域的老炮,靠“局部感知+权值共享”吃饭。 简单说,它专注于看图像的局部细 …

  5. 有没有比较详细通俗易懂的 Transformer 教程? - 知乎

    Transformer目前没有官方中文译名,暂时就叫Transformer吧。 在该论文中,作者主要将Transformer用于机器翻译 [2] 任务,后来研究者们发现Transformer在自然语言处理的很多任务上都展现出了优越 …

  6. 挑战 Transformer:全新架构 Mamba 详解

    Sep 23, 2025 · 而就在最近,一名为 Mamba 的架构似乎打破了这一局面。 与类似规模的 Transformer 相比, Mamba 具有 5 倍的吞吐量, 而且 Mamba-3B 的效果与两倍于其规模的 Transformer 相当。 性 …

  7. 你对下一代Transformer架构的预测是什么? - 知乎

    2. 引入随机化(Randomized Transformer) Transformer巨大的规模使得不管训练还是推理都极具挑战。 然而,很少有人知道的是,引入随机化矩阵算法可以减少Transformer需要的FLOPs。 虽然这种做法 …

  8. MoE和transformer有什么区别和联系? - 知乎

    01. Transformer:像“万能翻译官”的神经网络 Transformer 是当今AI大模型(如ChatGPT)的核心架构,最初用于机器翻译,核心是自注意力机制(Self-Attention),能同时分析句子中所有词的关系,而 …

  9. Transformer模型怎么用于regression的问题? - 知乎

    回归问题概述 Transformer模型基础 回归问题中的Transformer架构调整 应用案例 优化与技巧 挑战与改进 1. 回归问题概述 回归问题是监督学习中的一种任务,目标是预测一个连续值。这类问题通常涉及对数 …

  10. 当今改进cnn,transformer还有出路吗? - 知乎

    Point transformer v3: Simpler faster stronger 方法: 论文提出Point Transformer V3,通过改进Transformer架构,采用点云序列化和高效的Patch Attention机制,避免了KNN查询和复杂的位置编 …